
GPU-Accelerated

Photonic
Simulations

Hardware advances are enabling simulations
of Maxwell’s equations at unprecedented
speed and scale.

Momchil Minkov, Peng Sun,
Ben Lee, Zongfu Yu and Shanhui Fan

GPU-Accelerated

Photonic
Simulations

G raphics processing units (GPUs) designed
for high-performance computing (HPC)
have recently seen dramatic perfor-
mance improvements driven by the
needs of artificial intelligence. The same

hardware advances, it turns out, can also serve to
significantly speed up numerical simulations of
physical phenomena.

For problems in optics, one of the best-established
numerical techniques for solving Maxwell’s equations
is the finite-difference time-domain (FDTD) method.
The FDTD method is relatively simple to implement;
it is based on first principles and fully vectorial; its
computational cost scales linearly with each of the
dimensions of the system; and a single simulation
can obtain information across a wide electromagnetic
spectrum. FDTD is employed in a vast array of appli-
cations and has become one of the tools of choice for
optics and photonics design across many industries.

The popularity of the FDTD method, however,
has also created a need for simulating increasingly
larger and more complicated systems, as new devices
similarly become ever more complex. Fortunately, the
advances in GPU performance are well timed, and the
increases in simulation speed they are enabling are
both making such large-scale simulations possible
and dramatically reducing the turnaround time of
device design and optimization. This feature looks at
how hardware GPUs are enabling a new era of pho-
tonic simulations.

The GPU hardware advantage
A highly simplified comparison of central process-
ing units (CPUs) versus GPUs provides a convenient
entry point for understanding the advantages and

limitations of a GPU FDTD implementation. For
purposes of this simplified discussion, both archi-
tectures have two key components.

The first component is a compute unit, made up
of some number of compute cores that can perform
floating-point operations. A CPU typically has a
much smaller number of cores than a GPU. On the
other hand, a core in a CPU is also much more gen-
eral-purpose than a GPU core, and CPU cores can
easily switch between different instructions. GPUs,
in contrast, are less flexible, but are great at pushing
the same instruction through a very large number
of cores. Advances in programming languages and
compilers (for example, NVC++) mask the underly-
ing hardware discrepancies and enable acceleration
of standard C++ code on GPUs with no language
extensions or nonstandard libraries.

In both cases, the number of cores limits the
maximum possible throughput of floating-point

1047-6938/24/09/44/7-$15.00 ©Optica

NVIDIA

A highly simplified schematic comparison of CPU (left) and
GPU (right) architectures. The illustration intentionally neglects
many complexities to highlight the fundamental similarities
and differences between the two platforms.

MemoryMemory
BusBus

Cores Cores

CPU GPU

NVIDIA
H100 GPU.

46 OPTICS & PHOTONICS NEWS SEPTEMBER 2024

operations per second (FLOPS). The number of
FLOPS, however, is relevant only to the best-case
core utilization; in practice, often only a fraction
of this throughput will actually be achieved.
Therefore, GPUs only outperform CPUs on tasks
which parallelize well—that is, which can utilize
all cores efficiently.

The second key component of both CPUs and
GPUs, which can be a bottleneck for efficient paral-
lelization, is the memory access. Both architectures
need to read user inputs from and write results to
some form of random-access memory. To support
their larger number of cores, GPUs usually need
a larger memory bandwidth than CPUs. And for
FDTD simulations, the memory bandwidth turns
out to be the defining factor for performance.

Modeling FDTD performance on GPUs
With that schematic comparison of hardware archi-
tectures as background, we can now use a simple
model to compare the expected performance of
FDTD simulations on different platforms.

In the case of solving Maxwell’s equations for
optical simulations, the FDTD method consists of
defining the electric (E) and magnetic (H) fields on
a finite spatial grid, and repeatedly updating one
field using the values of the other. This is ubiqui-
tously done on the so-called Yee grid, in which E
is updated from the curl of H, and vice versa (see
diagram at upper right). A single cell of a Yee grid
contains six components, three for E and three for
H; the entire cell is considered updated when all
six components have been updated. A common
figure of merit for the FDTD execution speed is the
number of cells that can be updated per second.

We can predict the FDTD simulation performance
on specific hardware with a simple model with two
input parameters: the maximum achievable FLOPS
(F) and the maximum achievable memory band-
width (B, measured in bytes per second). If Nfl is
the number of operations needed to update a single
grid cell and Nbw is the number of bytes that must
be read or written to memory during that update,
the time needed to perform each function is Nfl/F for

Increases in simulation speed enabled by advances in graphic
processing units (GPUs) can dramatically reduce the turnaround
time of device design and optimization.

E H Ez H
z

x
y

xy

Speed, in billions of cells per second (Gcells/s), versus avail-
able memory bandwidth and FLOPS, for several common
CPU and GPU chips. Theoretical values have been obtained
from manufacturer hardware specifications. The figure is
qualitative only; the exact achievable FLOPS and band-
width can vary significantly depending on application and
algorithm implementation. The dashed black line separates
bandwidth-limited (above left) and compute-limited (below
right) performance.
Flexcompute

Left: The Yee grid for FDTD simulations of Maxwell’s equa-
tions, and the locations of the various vector field compo-
nents which are stored and updated during the execution of
the algorithm. E, electric-field component; H, magnetic-field
component. Right: 2D cross-section of the Yee grid. In
the time stepping, a field component (for example, Ez) is
updated using the surrounding four components of the
opposite field (for example, Hx and Hy).

FDTD speed (Gcells/s)

Memory bandwidth (GB/s)

Co
m

pu
te

 s
pe

ed
 (T

FL
O

PS
)

47 SEPTEMBER 2024 OPTICS & PHOTONICS NEWS

the grid cell update (the compute time) and Nbw/B for
the memory operation (the bandwidth time).

On practically every modern architecture, mem-
ory access and computational operations can overlap,
so the time needed to fully update the cell is not the
sum of the compute and bandwidth times, but rather
just the maximum of the two. Thus, a simple formula
for the achievable speed (S) of the FDTD algorithm
in cell updates per second is S = min (F/Nfl , B/Nbw).

For the most basic FDTD updates—for exam-
ple, homogeneous nondispersive materials with
no perfectly-matched-layer (PML) boundaries—we
can count six floating-point operations (addition or
multiplication) to update a single field component,
so Nfl = 36 (that is, six components each requiring
six operations). Similarly, on the bandwidth side,
a single field component would require five reads
(the field and the four neighboring components of
the opposite field) and one write (the updated field),
or a total of six memory access operations; with six
field components in total and a size of 4 bytes for
single-precision numbers, Nbw = 144 bytes. (While
we have assumed single precision here, the same
principles apply with similar conclusions using
other arithmetic.)

Running the speed test
We can now compare the model-predicted FDTD
speed on different hardware platforms. The com-
parison, shown in the chart on p. 47, conveys two

important messages. The first is that the FDTD
algorithm is strongly bandwidth-limited regardless
of hardware. The second is that GPUs—because of
their much larger bandwidth—still significantly out-
perform CPUs.

Even a desktop GPU, such as the NVIDIA RTX
3080, can outperform some of the best CPUs typi-
cally found in HPC servers (AMD EPYC 9734, Intel
Xeon Max 9462). And, at least for FDTD simulations,
the performance difference between the best HPC
GPUs (NVIDIA A100 SXM, NVIDIA H100 SXM)
and some of the best desktop CPUs (AMD Ryzen
7950X, Intel i9-13900K) approaches some two orders
of magnitude.

To go beyond theory, we used Tidy3D, Flex-
compute’s implementation of the FDTD method, to
measure the achieved performance on several dif-
ferent GPU chips. We found very good agreement
with the simple model presented here. We tested a
basic FDTD simulation containing a homogeneous
nondispersive medium and no PML, and recorded
speeds up to 20 Gcells/s on an NVIDIA A100 SXM
GPU and up to 33 Gcells/s on an H100 SXM GPU,
compared with the model predictions of 14 Gcells/s
and 23 Gcells/s, respectively. The FDTD through-
put is projected to reach more than 100 Gcells/s on
a B200 Blackwell GPU.

The achieved performance was actually higher
than predicted, because our simple model neglected
the memory hierarchy present in all hardware, which

Running FDTD models of an arrayed waveguide grating (left) and a metalens (right) on GPU hardware resulted in
significant decreases in simulation time.
Flexcompute

10 mm

y
(m

ic
ro

n)

x (micron)

48 OPTICS & PHOTONICS NEWS SEPTEMBER 2024

enables caching of data for significantly quicker
access. This is also why the exact speed in the exper-
imental benchmarks depends nontrivially on some
of the simulation parameters, like the number of
grid points along each dimension.

In some cases—for example, when the GPU is
underutilized by small simulations, or the cache is
oversaturated for large ones—the recorded speed
can also be lower than the prediction. However, we
stress that the model presented here has the benefit
of being extremely simple and easy to understand
intuitively, while still capturing the GPU speed to
within a factor of about 1.5 on several different chips
and for varying simulation domains. This justifies
its use as a credible figure of merit.

New horizons in speed and scale
The use of GPUs for FDTD simulations is ushering
in dramatic speed increases, with simulation turn-
around times one or two orders of magnitude shorter
than with conventional hardware. A single high-end
GPU can, within minutes, perform simulations that
would have taken hours on a high-end CPU. That
speed advantage directly translates into an advan-
tage in scale: For the same simulation time, a much
larger, more complex device can be simulated on
a GPU than on conventional hardware. This scale
advantage is magnified when multiple GPUs work
together on a single simulation. This has made it
possible to simulate devices that were until recently
thought impossible for full-wave methods.

Two such simulations, performed using Tidy3D
and 32 A100 GPUs working together, illustrate the
point. The first one is a large-footprint (220 × 220 µm)
arrayed waveguide grating (AWG) device for a photonic
integrated circuit, for use in narrowband wavelength
multiplexing. The full 3D simulation, involving 3 bil-
lion grid points and more than 300,000 timesteps, was
accomplished in just under an hour.

The second example is a large-footprint (10.6 ×
10.6 mm) mid-IR metalens (radius 5.3 mm) with a
central wavelength of 10.6 µm and a diameter of 1,000
cylindrical-pillar meta-atoms (574,775 meta-atoms in
total). This surface was discretized into more than

9 billion grid points, but required only 10,000 time
steps to complete, because the device does not have
strong resonance and the propagation distance, which
is perpendicular to the device, is relatively short. The
FDTD simulation time for this metalens design case
was only about 7 minutes.

These are just two examples that highlight the par-
adigm shift in large-scale design engineering using
first-principles simulations that GPU advances have
made possible. Previously, such simulations would
have been too slow, and consequently approximate

Scaling of GPU-to-device-memory bandwidth (top) and
GPU-to-GPU bandwidth (bottom) for different interfaces.
NVIDIA

The use of GPUs for FDTD simulations is ushering in dramatic
speed increases, with simulation turnaround times one or two
orders of magnitude shorter than with conventional hardware.

Bi
-d

ir
ba

nd
w

id
th

 p
er

 c
hi

p
(G

B/
s)

Year

Interconnect type
 NVLink
 PCle

Ba
nd

w
id

th
 (G

B/
s)

Year

Memory interface
GDDR3
GDDR5
GDDR5X/GDDR6
GDDR6X
HBM2
HBM3

49 SEPTEMBER 2024 OPTICS & PHOTONICS NEWS

methods were used—which sacrifice the accuracy
of the results.

Bandwidth on the rise
In the past 20 years, GPU memory bandwidth has
increased by about 240 times, which is equivalent
to a compound annual growth rate of 32%. Such
scaling is driven by higher data transfer rates and
wider buses.

In the case of graphics dynamic random-access
memory (GDDR), for example, data transfer rate
increases with higher clock frequency, at the cost
of signal integrity and power consumption. As it
becomes more difficult to boost clock frequency
to greater than 2.0 GHz, GDDR5X/GDDR6 doubles
the data transfer rate by doubling the number of
memory reads/writes in each clock cycle. GDDR6X
further doubles the data transfer rate by encoding
two bits of information in each symbol with PAM-4
signaling.

As the scaling of the GDDR interface slows down,
the high-bandwidth memory (HBM) interface car-
ries on with wider buses. If the GDDR interface is
like a high-speed train, then the HBM interface is
more like a ferry that runs slower but with an order
of magnitude or more greater carrying capacity.
Each HBM chip has a bus width of 1024 bits, which
is 32 times wider than a GDDR chip. Hence a GPU
packed with 8X HBM chips, like the NVIDIA Black-
well B200 GPUs used in HGX B200, has a bus width
of 8192 bits, which is 16 times wider than a GDDR
interface with a 512-bit bus.

For a single GPU, the bandwidth-to-device mem-
ory (upper chart on p. 49) determines the speed of an
FDTD simulation. On the other hand, the absolute
fastest a simulation can run given unlimited hard-
ware resources is determined by the GPU-to-GPU
interconnect bandwidth (lower chart on p. 49). Scal-
ing of this bandwidth in recent years has followed a
similar trend: the compound annual growth rate is
approximately 16% for the PCIe interface, and 32%
for NVIDIA’s NVLink interface.

Spinning the wheel of innovation
Increasing device memory bandwidth and GPU-to-
GPU bandwidth is dramatically expanding the speed
and scale of photonic simulations. Interestingly,
many applications of these simulations will also
relate directly to hardware advances that will further
push the attainable bandwidths. Optical intercon-
nects are becoming increasingly miniaturized and,
while they are already ubiquitous for long-range
data transfer, are also becoming relevant at shorter
and shorter distances.

It is expected that the exponential growth of GPU-
to-GPU bandwidth will eventually be continued
by optical rather than electronic interconnects (see
“Photonics and AI,” p. 26). In the long run, even the
single-GPU HBM could end up optically connected.
There is already vigorous research and development
in both of these directions, requiring a substantial
amount of simulation in the design process. And
these developments might one day further improve
the scale and throughput of the optical simulations
themselves—creating a magnificent closed loop of
innovation. OPN

We thank Prashanta Kharel and Xinzhong (Tom) Chen for
development of the AWG and metalens examples shown in
this article, and Tyler Hughes, John Moore and Emerson
Melo for insightful discussions.

Momchil Minkov (momchil@flexcompute.com) is with
Flexcompute, Watertown, MA, USA. Zongfu Yu is with
Flexcompute and the University of Wisconsin, Madison,
WI, USA. Shanhui Fan is with Flexcompute and Stanford
University, CA, USA. Peng Sun and Ben Lee are with
NVIDIA Corp., Santa Clara, CA, USA.

References and Resources
c	A. Taflove and S. C. Hagness. Computational

Electrodynamics: The Finite-Difference Time-Domain
Method, 3rd ed. (Artech House, Norwood, 2005).

c	T.W. Hughes et al. Appl. Phys. Lett. 119, 150502
(2021).

c	F. Teixeira et al. Nat. Rev. Methods Primers 3, 75
(2023).

GPU-enabled simulations may aid the design of GPU-to-GPU
optical interconnects that further push attainable bandwidths—
and further improve the scale of the simulations themselves.

50 OPTICS & PHOTONICS NEWS SEPTEMBER 2024

