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G raphics processing units (GPUs) designed 
for high-performance computing (HPC) 
have recently seen dramatic perfor-
mance improvements driven by the 
needs of artificial intelligence. The same 

hardware advances, it turns out, can also serve to 
significantly speed up numerical simulations of 
physical phenomena.

For problems in optics, one of the best-established 
numerical techniques for solving Maxwell’s equations 
is the finite-difference time-domain (FDTD) method. 
The FDTD method is relatively simple to implement; 
it is based on first principles and fully vectorial; its 
computational cost scales linearly with each of the 
dimensions of the system; and a single simulation 
can obtain information across a wide electromagnetic 
spectrum. FDTD is employed in a vast array of appli-
cations and has become one of the tools of choice for 
optics and photonics design across many industries.

The popularity of the FDTD method, however, 
has also created a need for simulating increasingly 
larger and more complicated systems, as new devices 
similarly become ever more complex. Fortunately, the 
advances in GPU performance are well timed, and the 
increases in simulation speed they are enabling are 
both making such large-scale simulations possible 
and dramatically reducing the turnaround time of 
device design and optimization. This feature looks at 
how hardware GPUs are enabling a new era of pho-
tonic simulations.

The GPU hardware advantage
A highly simplified comparison of central process-
ing units (CPUs) versus GPUs provides a convenient 
entry point for understanding the advantages and 

limitations of a GPU FDTD implementation. For 
purposes of this simplified discussion, both archi-
tectures have two key components.

The first component is a compute unit, made up 
of some number of compute cores that can perform 
floating-point operations. A CPU typically has a 
much smaller number of cores than a GPU. On the 
other hand, a core in a CPU is also much more gen-
eral-purpose than a GPU core, and CPU cores can 
easily switch between different instructions. GPUs, 
in contrast, are less flexible, but are great at pushing 
the same instruction through a very large number 
of cores. Advances in programming languages and 
compilers (for example, NVC++) mask the underly-
ing hardware discrepancies and enable acceleration 
of standard C++ code on GPUs with no language 
extensions or nonstandard libraries.

In both cases, the number of cores limits the 
maximum possible throughput of floating-point 
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A highly simplified schematic comparison of CPU (left) and 
GPU (right) architectures. The illustration intentionally neglects 
many complexities to highlight the fundamental similarities 
and differences between the two platforms. 
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operations per second (FLOPS). The number of 
FLOPS, however, is relevant only to the best-case 
core utilization; in practice, often only a fraction 
of this throughput will actually be achieved. 
Therefore, GPUs only outperform CPUs on tasks 
which parallelize well—that is, which can utilize 
all cores efficiently.

The second key component of both CPUs and 
GPUs, which can be a bottleneck for efficient paral-
lelization, is the memory access. Both architectures 
need to read user inputs from and write results to 
some form of random-access memory. To support 
their larger number of cores, GPUs usually need 
a larger memory bandwidth than CPUs. And for 
FDTD simulations, the memory bandwidth turns 
out to be the defining factor for performance.

Modeling FDTD performance on GPUs
With that schematic comparison of hardware archi-
tectures as background, we can now use a simple 
model to compare the expected performance of 
FDTD simulations on different platforms.

In the case of solving Maxwell’s equations for 
optical simulations, the FDTD method consists of 
defining the electric (E) and magnetic (H) fields on 
a finite spatial grid, and repeatedly updating one 
field using the values of the other. This is ubiqui-
tously done on the so-called Yee grid, in which E 
is updated from the curl of H, and vice versa (see 
diagram at upper right). A single cell of a Yee grid 
contains six components, three for E and three for 
H; the entire cell is considered updated when all 
six components have been updated. A common 
figure of merit for the FDTD execution speed is the 
number of cells that can be updated per second.

We can predict the FDTD simulation performance 
on specific hardware with a simple model with two 
input parameters: the maximum achievable FLOPS 
(F) and the maximum achievable memory band-
width (B, measured in bytes per second). If Nfl is 
the number of operations needed to update a single 
grid cell and Nbw is the number of bytes that must 
be read or written to memory during that update, 
the time needed to perform each function is Nfl/F for 

Increases in simulation speed enabled by advances in graphic 
processing units (GPUs) can dramatically reduce the turnaround 
time of device design and optimization.
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Speed, in billions of cells per second (Gcells/s), versus avail-
able memory bandwidth and FLOPS, for several common 
CPU and GPU chips. Theoretical values have been obtained 
from manufacturer hardware specifications. The figure is 
qualitative only; the exact achievable FLOPS and band-
width can vary significantly depending on application and 
algorithm implementation. The dashed black line separates 
bandwidth-limited (above left) and compute-limited (below 
right) performance. 
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Left: The Yee grid for FDTD simulations of Maxwell’s equa-
tions, and the locations of the various vector field compo-
nents which are stored and updated during the execution of 
the algorithm. E, electric-field component; H, magnetic-field 
component. Right: 2D cross-section of the Yee grid. In 
the time stepping, a field component (for example, Ez) is 
updated using the surrounding four components of the 
opposite field (for example, Hx and Hy).
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the grid cell update (the compute time) and Nbw/B for 
the memory operation (the bandwidth time).

On practically every modern architecture, mem-
ory access and computational operations can overlap, 
so the time needed to fully update the cell is not the 
sum of the compute and bandwidth times, but rather 
just the maximum of the two. Thus, a simple formula 
for the achievable speed (S) of the FDTD algorithm 
in cell updates per second is S = min (F/Nfl , B/Nbw).

For the most basic FDTD updates—for exam-
ple, homogeneous nondispersive materials with 
no perfectly-matched-layer (PML) boundaries—we 
can count six floating-point operations (addition or 
multiplication) to update a single field component, 
so Nfl = 36 (that is, six components each requiring 
six operations). Similarly, on the bandwidth side, 
a single field component would require five reads 
(the field and the four neighboring components of 
the opposite field) and one write (the updated field), 
or a total of six memory access operations; with six 
field components in total and a size of 4 bytes for 
single-precision numbers, Nbw = 144 bytes. (While 
we have assumed single precision here, the same 
principles apply with similar conclusions using 
other arithmetic.)

Running the speed test
We can now compare the model-predicted FDTD 
speed on different hardware platforms. The com-
parison, shown in the chart on p. 47, conveys two 

important messages. The first is that the FDTD 
algorithm is strongly bandwidth-limited regardless 
of hardware. The second is that GPUs—because of 
their much larger bandwidth—still significantly out-
perform CPUs.

Even a desktop GPU, such as the NVIDIA RTX 
3080, can outperform some of the best CPUs typi-
cally found in HPC servers (AMD EPYC 9734, Intel 
Xeon Max 9462). And, at least for FDTD simulations, 
the performance difference between the best HPC 
GPUs (NVIDIA A100 SXM, NVIDIA H100 SXM) 
and some of the best desktop CPUs (AMD Ryzen 
7950X, Intel i9-13900K) approaches some two orders 
of magnitude.

To go beyond theory, we used Tidy3D, Flex-
compute’s implementation of the FDTD method, to 
measure the achieved performance on several dif-
ferent GPU chips. We found very good agreement 
with the simple model presented here. We tested a 
basic FDTD simulation containing a homogeneous 
nondispersive medium and no PML, and recorded 
speeds up to 20 Gcells/s on an NVIDIA A100 SXM 
GPU and up to 33 Gcells/s on an H100 SXM GPU, 
compared with the model predictions of 14 Gcells/s 
and 23 Gcells/s, respectively. The FDTD through-
put is projected to reach more than 100 Gcells/s on 
a B200 Blackwell GPU.

The achieved performance was actually higher 
than predicted, because our simple model neglected 
the memory hierarchy present in all hardware, which 

Running FDTD models of an arrayed waveguide grating (left) and a metalens (right) on GPU hardware resulted in 
significant decreases in simulation time. 
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enables caching of data for significantly quicker 
access. This is also why the exact speed in the exper-
imental benchmarks depends nontrivially on some 
of the simulation parameters, like the number of 
grid points along each dimension.

In some cases—for example, when the GPU is 
underutilized by small simulations, or the cache is 
oversaturated for large ones—the recorded speed 
can also be lower than the prediction. However, we 
stress that the model presented here has the benefit 
of being extremely simple and easy to understand 
intuitively, while still capturing the GPU speed to 
within a factor of about 1.5 on several different chips 
and for varying simulation domains. This justifies 
its use as a credible figure of merit.

New horizons in speed and scale
The use of GPUs for FDTD simulations is ushering 
in dramatic speed increases, with simulation turn-
around times one or two orders of magnitude shorter 
than with conventional hardware. A single high-end 
GPU can, within minutes, perform simulations that 
would have taken hours on a high-end CPU. That 
speed advantage directly translates into an advan-
tage in scale: For the same simulation time, a much 
larger, more complex device can be simulated on 
a GPU than on conventional hardware. This scale 
advantage is magnified when multiple GPUs work 
together on a single simulation. This has made it 
possible to simulate devices that were until recently 
thought impossible for full-wave methods.

Two such simulations, performed using Tidy3D 
and 32 A100 GPUs working together, illustrate the 
point. The first one is a large-footprint (220 × 220 µm) 
arrayed waveguide grating (AWG) device for a photonic 
integrated circuit, for use in narrowband wavelength 
multiplexing. The full 3D simulation, involving 3 bil-
lion grid points and more than 300,000 timesteps, was 
accomplished in just under an hour.

The second example is a large-footprint (10.6 × 
10.6 mm) mid-IR metalens (radius 5.3 mm) with a 
central wavelength of 10.6 µm and a diameter of 1,000 
cylindrical-pillar meta-atoms (574,775 meta-atoms in 
total). This surface was discretized into more than 

9 billion grid points, but required only 10,000 time 
steps to complete, because the device does not have 
strong resonance and the propagation distance, which 
is perpendicular to the device, is relatively short. The 
FDTD simulation time for this metalens design case 
was only about 7 minutes.

These are just two examples that highlight the par-
adigm shift in large-scale design engineering using 
first-principles simulations that GPU advances have 
made possible. Previously, such simulations would 
have been too slow, and consequently approximate 

Scaling of GPU-to-device-memory bandwidth (top) and 
GPU-to-GPU bandwidth (bottom) for different interfaces. 
NVIDIA

The use of GPUs for FDTD simulations is ushering in dramatic 
speed increases, with simulation turnaround times one or two 
orders of magnitude shorter than with conventional hardware.
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methods were used—which sacrifice the accuracy 
of the results.

Bandwidth on the rise
In the past 20 years, GPU memory bandwidth has 
increased by about 240 times, which is equivalent 
to a compound annual growth rate of 32%. Such 
scaling is driven by higher data transfer rates and 
wider buses.

In the case of graphics dynamic random-access 
memory (GDDR), for example, data transfer rate 
increases with higher clock frequency, at the cost 
of signal integrity and power consumption. As it 
becomes more difficult to boost clock frequency 
to greater than 2.0 GHz, GDDR5X/GDDR6 doubles 
the data transfer rate by doubling the number of 
memory reads/writes in each clock cycle. GDDR6X 
further doubles the data transfer rate by encoding 
two bits of information in each symbol with PAM-4 
signaling.

As the scaling of the GDDR interface slows down, 
the high-bandwidth memory (HBM) interface car-
ries on with wider buses. If the GDDR interface is 
like a high-speed train, then the HBM interface is 
more like a ferry that runs slower but with an order 
of magnitude or more greater carrying capacity. 
Each HBM chip has a bus width of 1024 bits, which 
is 32 times wider than a GDDR chip. Hence a GPU 
packed with 8X HBM chips, like the NVIDIA Black-
well B200 GPUs used in HGX B200, has a bus width 
of 8192 bits, which is 16 times wider than a GDDR 
interface with a 512-bit bus.

For a single GPU, the bandwidth-to-device mem-
ory (upper chart on p. 49) determines the speed of an 
FDTD simulation. On the other hand, the absolute 
fastest a simulation can run given unlimited hard-
ware resources is determined by the GPU-to-GPU 
interconnect bandwidth (lower chart on p. 49). Scal-
ing of this bandwidth in recent years has followed a 
similar trend: the compound annual growth rate is 
approximately 16% for the PCIe interface, and 32% 
for NVIDIA’s NVLink interface.

Spinning the wheel of innovation
Increasing device memory bandwidth and GPU-to-
GPU bandwidth is dramatically expanding the speed 
and scale of photonic simulations. Interestingly, 
many applications of these simulations will also 
relate directly to hardware advances that will further 
push the attainable bandwidths. Optical intercon-
nects are becoming increasingly miniaturized and, 
while they are already ubiquitous for long-range 
data transfer, are also becoming relevant at shorter 
and shorter distances.

It is expected that the exponential growth of GPU-
to-GPU bandwidth will eventually be continued 
by optical rather than electronic interconnects (see 
“Photonics and AI,” p. 26). In the long run, even the 
single-GPU HBM could end up optically connected. 
There is already vigorous research and development 
in both of these directions, requiring a substantial 
amount of simulation in the design process. And 
these developments might one day further improve 
the scale and throughput of the optical simulations 
themselves—creating a magnificent closed loop of 
innovation. OPN
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GPU-enabled simulations may aid the design of GPU-to-GPU 
optical interconnects that further push attainable bandwidths—
and further improve the scale of the simulations themselves.
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